
"Alexandru Ioan Cuza" University
Faculty of Computer Science

Agent Developing Platform

Agent Communication

Author Coordinator
Cătălin Hriţcu Lect. Dr. Sabin-Corneliu Buraga

July 2005

Copyright (c) 2005 Cătălin Hriţcu.
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2.

While every precaution has been taken in the preparation of this thesis, the author
assumes no responsibility for errors and omissions or for damages resulting from the
use of the information contained herein.

All product and service names are trademarks of their respective owners.

2

Table of Contents

1.Preface... 4

2.Introduction... 6
2.1Goal... 6
2.2Structure.. 6
2.3Source Code..7
2.4Acknowledgments..7

3.The Basics.. 8
3.1What Is a Software Agent?.. 8
3.2Agent Frameworks...8
3.3The FIPA Abstract Agent Architecture...9
3.4The FIPA Agent Communication Language.................................. 11
3.5Message-Oriented Communication... 16
3.6Service-Oriented Architectures..19
3.7Web Services and SOAP...21
3.8Java 2 Platform, Enterprise Edition... 23

4.The ADF Architecture... 28
4.1Goals..28
4.2Design Overview..33
4.3The Agent Management System... 34
4.4The Agent Container..36
4.5Agent Runner...40

5.Agent Communication in ADF.. 41
5.1Transport Protocols..41
5.2ACL Encodings.. 47

6.Conclusion and Future Work.. 50

7.Appendices... 51
7.1The FIPA ACL Message Structure.. 51
7.2The FIPA ACL Communicative Acts..51
7.3FIPA Interaction protocols..53
7.4The ADF Message DTD...53

8.Bibliography.. 55

3

1. Preface

Many people have prophesized over the last ten years that software agents will bring
the next revolution in Computer Science and that, this revolution will have dramatic
consequences, not only on the way we build software, but also on our every day lives. It
is needless to say that this revolution never happened, at least not yet. We can all see
this, every time we turn on our computers and use the same type of non-intelligent
programs we were using ten years ago. If there was a revolution in the last decade that is
the revolution of the World Wide Web and it's related technologies and not that of
software agents.

The faith of agent technologies and their unfulfilled prophecies, is somehow similar to
that of Artificial Intelligence, and this is in part caused by the fact that agents are
supposed to be intelligent. Some progress is surely being made, but there is apparently
no way to tell whether the answer to many of the fundamental problems of software
agents are just around the corner or a million miles away. Some of these real problems
are well explained in a very critical but realistic paper [Nwana and Ndumu, 1999]:
information discovery, communication, ontology, collaboration, reasoning, monitoring,
legacy software integration. The conclusion the authors draw in the paper is that for
agent systems to reach their full potential, developers must avoid premature
formalization and start implementing actual agent systems. And this is the pragmatic
goal we have in mind for the Agent Developing Framework (ADF) we will describe in
this work.

Knowing that we won't be able to deal with more than of the enumerated problems, we
have chosen what we consider to be the most basic one: agent communication. We find
this also to be the simpler than the other, because almost all the pieces of the puzzle
seem to be present somewhere, in one form or another, and only need to be put in place.
For two agents to communicate there is the need for a common transport protocol, a
common communication language and a common understanding of the terms in use
(e.g. a common ontology). Web technologies seem to offer at this time solutions for two
of the three issues, while FIPA deals with the remaining one acceptably. SOAP based
web services are able to communicate over any transport so "SOAP over anything" will
be our "transport protocol", and because SOAP over HTTP is already ubiquitous it
makes a very good instance of that. The common communication language will be
FIPA ACL encoded as XML, due to lack of other choices that would assure
interoperability. Finally, RDF and OWL should solve, at least in part, the ontology
problem, so RDF will be the our content language. Since all these are XML-based (or
XML-capable) technologies, XML will be the ligand to make everything fit together. In
order assure communication is working the way it should however, we will also need at
least the basic architecture of the multiagent platform. And because there is a match
between multiagent platforms and a loosely-coupled service-oriented architecture, this
is the architectural design we will use in ADF.

4

No matter the fact that the agent revolution did not happen, there is still great research
potential in agent systems, not to mention that they are very interesting software to work
on. So, what we can expect is agent evolution, and evolution in general has the tendency
to take a lot of time, and a lot of hard work in this case.

5

2. Introduction

2.1 Goal
The purpose of this thesis is to introduce the reader to ongoing research regarding
software agents, and present the personal contributions of the author to the development
of a new agent developing framework (ADF). These contributions are focused in the
area of agent communication, but also in redefining the overall architecture of ADF in
order to make it withstand the challenges of the future. We will investigate the
architectural issues involved and present a reference implementation of the framework
based on Java 2 Enterprise Edition. We will also examine in great detail the current
technologies that would make such an effort possible, and also analyze what the near
future has to offer.

The goal of the ADF project is to build a complete multiagent framework. However,
this is a very complex task, which was started more than one year ago [Nichifor and
Buraga, 2004] and will surely take more time and effort to bring to an end. In order to
avoid getting lost in the process, we have tried to identify the most important tasks and
focused our efforts there. Areas such as agent mobility and security are not yet
thoroughly investigated and will be the subject of future research.

2.2 Structure
This work is organized into eight chapters:

• Chapter 1 is a personal view of the author on the agent world and its evolution.
• Chapter 3 provides an advanced introduction to software agents and their

communication. Many different technologies are discussed and many references
to other works are made. The chapter covers the FIPA abstract architecture for
agent frameworks, the FIPA agent communication language, the different types
of message-oriented communication with an emphasis on reliability and
persistence. The chapter also introduces service-oriented architectures, SOAP-
based web services, the Resource Description Framework and the Java 2
Platform, Enterprise Edition.

• Chapter 4 introduces the ADF architecture, starting with the general goals and
ending with the actual implementation. The goals of the framework are stated
and discussed at large: interoperability, extensibility, platform independence,
scalability, distribution transparency, ease-of-use, security and pragmatism. The
reminder of this chapter discusses the ADF general design and implementation.

• Chapter 5 covers agent communication in ADF. The chapter is broken into two
sections. One that covers transport protocols and the other describing the agent
communication language and its encodings.

• The last three chapters provide appendices (Chapter 6), the conclusion of this

6

work (Chapter 7) and the extensive bibliography (Chapter 8).

2.3 Source Code
The source code of the Agent Developing Framework (ADF), described in this thesis,
can be freely obtained from http://adf.sourceforge.net/. The framework is free software;
and can be redistributed and/or modified under the terms of the GNU Lesser General
Public License, version 2.1 as published by the Free Software Foundation.

This framework is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a
particular purpose. Please see [LGPL] for more details.

2.4 Acknowledgments
Many people contributed to the realization of this thesis, whether they are aware of this
or not. I would especially like to thank my coordinator, Lect. Dr. Sabin-Corneliu
Buraga, for his amazing classes in Web Technologies and his substantial support on this
project. I also express my gratitude to the other professors of the Faculty of Computer
Science in Iasi, for all the important things they taught me, not only about Computer
Science. Additionally, I thank Ovidiu-Cătălin Nichifor, the original developer of ADF,
for fulfilling the last duty every open source developer has, when he looses interest in a
project, that is: handing it off to a competent successor. His help was most precious
until I got accustomed to the software. And last, but not least, I express my appreciation
to the open source community as a whole, and to the people behind the excellent open
source tools I used intensively for this project: JBoss, Jade, Eclipse, XDoclet, Hermes,
SourceForge, OpenOffice, uml2svg, Apache Tomcat, Forrest, log4j and many, many
others.

7

3. The Basics

This chapter introduces the main concepts and technologies that will be used in the
reminder of this work. Agent frameworks are extremely complex software systems,
bringing together knowledge from a lot of different fields like Distributed Systems,
Software Engineering, Artificial Intelligence, Human-Computer Interaction, Linguistics
and many other. We will cover a lot of interesting topics, but since our interest is in
agent communication we will be biased towards Distributed Systems and Software
Engineering. Strap yourself in!

3.1 What Is a Software Agent?
According to [Jennings and Wooldridge, 1998], a software agent is an autonomous
process capable of reacting to, and initiating changes in its environment possibly in
collaboration with users and other agents. This definition is not the only one, and, in
fact, there is some controversy concerning what an agent is [Franklin and Graesser,
1996]. For our purposes however, this definition is adequate, so we will explain it in
some detail.

To be considered an agent, a software object must be autonomous, that means it must
be capable of making independent decisions and taking actions to satisfy internal goals
based upon its perceived environment. This also means that agents are able to sense the
environment and timely respond to changes (reactivity) and can initiate actions on their
own to affect this same environment (proactivity). Other properties of agents that are
less common to but still very meaningful are the ability to migrate from one host to
another (mobile agents) and the capability to adapt based on past experience (learning
agents).

Another important aspect of agents is that they usually cooperate with other agents
being part of a multiagent system. For example, collaborative agents could be used to
arrange meetings [Kozierok and Maes, 1993] or attend auctions [Chavez and Maes,
1996] on behalf of their human owners. The agents we usually have in mind from now
on are collaborative agents and the emphasis will be on their communication.

3.2 Agent Frameworks
A software framework is a set of cooperating classes that make up a reusable design for
a specific class of software [Johnson and Foote, 1988]. By extension, an agent
framework provides a foundation for building agent-oriented applications. So instead of
doing low-level work, like building naming, location and directory services, inventing
communication protocols, mobility mechanisms or cryptographic algorithms,
developers can concentrate on their particular problems and on the logic of the agent-
oriented applications solving them.

8

Agent frameworks have an important role in building large-scale distributed systems, so
there have been many attempts to build such frameworks, in both the research and
business communities. Some of them were successful and are still very actively
maintained like [Cougaar], [DIET Agents], [Jade], [Voyager] or [ZEUS], while other
didn't stand the test of time, but nevertheless had an important contribution to the
software agents field. In this later category we can name [Aglets], [Ajanta], [D'Agents],
[FIPA-OS] or [Omega].

3.3 The FIPA Abstract Agent Architecture
With all the different agent frameworks being built by different people and with
different goals in mind, it was no surprise that they were not interoperable at first. As a
starting point, the The Foundation for Intelligent Physical Agents [FIPA] developed a
set of specifications that would allow heterogeneous agents to interoperate. While these
specifications are far from perfect and failed to achieve widespread support in the agent
world, they are closer to a standard than anything else is, so will discuss them in this
and the next sections1.

FIPA has defined an abstract reference model, which must be obeyed by any FIPA
compliant framework in order to assure interoperability [FIPA00001]. The internal
design and implementation of agents is not mandated by FIPA, so there is a broad set of
possible concrete architectures, which will interoperate because they share the common
abstract design (see Illustration 1).

1On 8 June 2005, after years of inactivity and decline, FIPA was officially accepted by the IEEE as its
eleventh standards committee, and will be known as the FIPA Standards Committee. It has also changed
its original goal to moving standards for agents and agent-based systems into the wider context of
software development in general. So probably the FIPA approach was not entirely wrong, but surely
ahead of its time, and with the benefits provided by the umbrella of a large standards organization like
IEEE, FIPA could be reborn.

9

In this model the agent platform has to provide the basic services needed in any
multiagent system. These facilities include those for creating, registering and deleting
agents, facilities to locate agents and services, and last, but not least, facilities for inter-
agent communication [FIPA00023]. Some areas that are not sufficiently abstract like
agent lifecycle management, agent mobility or security related issues and are not part of
the FIPA abstract architecture.

An agent management system (AMS) keeps track of the agents for the associated
platform and provides services for agent creation, registration and deletion. It also
provides a naming service by which a globally unique Agent Identifier (AID) is mapped
to a local communication endpoint. The AID is an extensible collection of parameter-
value pairs, which comprises at least:

• The name parameter, which is a globally unique identifier that can be used as a
unique referring expression of the agent. One of the simplest mechanisms is to
construct it from the actual name of the agent and its home agent platform
(HAP) address, separated by the "@" character.

• The addresses parameter, which is a list of Uniform Resource Locators
[RFC2396] where a message can be delivered.

• The resolvers parameter, which is a list of name resolution service agents.

Two AIDs are considered to be equivalent if their name parameters are the same. AIDs
are primarily intended to be used to identify agents inside the envelope of a transport
message, specifically within the sender and receivers parameters, so we will discuss
more about them in the context of agent communication.

A Message Transport Service [FIPA00067] provides the default mechanism for FIPA

10

Illustration 1: The FIPA Abstract Agent Architecture Model

Software

Agent Platform

Agent Agent Management
System

Directory
Facilitator

Message Transport System

Agent Platform

Message Transport System

agents to communicate by exchanging messages. In particular the Message Transport
Service (MTS) is responsible for point-to-point communication with other platforms
(see Illustration 2). When a message is sent it is first encoded using an encoding-
representation appropriate for the transport, for example as a String [FIPA00070] or as
an XML document [FIPA00071], and then included in a transport-message. The
transport-message contains the encoded ACL message and an envelope including the
sender and receiver transport-descriptions as depicted in Illustration 3. FIPA ACL will
be presented in the next section, while agent communication is a main topic throughout
this work.

A Directory Facilitator (DF) is an optional component of the agent platform that
provides yellow pages services to other agents. In addition to a number of standard
services agents may register their services with the DF or search the DF to find out what
services are offered by other agents. An agent providing a service is more constrained in
its behavior than a general-purpose agent, loosing some of its autonomy. It could
however refuse to provide the service if that violates its internal agenda.

3.4 The FIPA Agent Communication Language
One major difference between agent platforms and classic approaches to distributed
systems, is that agents communicate by means of an application-level communication
protocol, which is referred to, as an agent communication language. Popular agent
communication languages are the FIPA ACL and the Knowledge Query and
Manipulation Language [KQML].

Agent communication languages rely on the speech act theory, originally developed by

11

Illustration 2: FIPA Message Transport Model

Agent Platform

Agent Platform

Message Transport Service

Message Transport Service

Agent

Agent

Message Payload (ACL)

Message = Payload + Envelope

Message Payload (ACL)

Illustration 3: The FIPA Transport-message

Transport-message

ACL Message

Envelope
Sender: transport-description
Receiver(s): transport-description(s)
Additional attribute: XYZ

Sender: Agent ID
Receiver(s): Agent ID(s)

Message content

[Searle, 1969] and later enhanced by [Winograd and Flores, 1987]. In an ACL a strict
separation is made between the contents of the of the message and its purpose, also
known as the performative or the communicative act. The set of possible performatives
is limited and their meaning is specified by the agent communication language and
known by all the agents using the it. The content of the message is not standardized and
varies from system to system, and the use of task-oriented ontologies is very common.
To assure two agents understand each other they have to not only speak the same
language, but also have a common ontology. An ontology is a part of the agent's
knowledge base and describes what kind of things an agent can deal with and how they
are related to each other.

Other than the special case of agents that operate alone and interact only with human
users or other software interfaces, agents have to communicate with each other in order
to perform the tasks for which they are responsible.

Consider the situation depicted in Illustration 4, where agent i has amongst its mental
attitudes some goal G. Deciding to satisfy G it adopts a specific intention, I. When
agent i cannot carry out the intention by itself, the question becomes which message or
set of messages should it send to another agent (j in Illustration 4) to cause intention I to
be satisfied? If agent i is behaving rationally, it will send out a message whose effect is
to attempt to satisfy the intention and hence achieve the goal.

12

Illustration 4: Example of Agent Communication Using Speech Acts

Message Transport Service

Agent i Agent j

Goal G

Intent I

Speech act

Message MEncoder Decoder

S R S R S R

Asynchronous Synchronous
(receipt-based)

Synchronous
(response-based)

For example, if a personal assistant agent i has to schedule a meeting at a certain time T
between his owner O and one of his friends F (G = "arrange a meeting between O and
F"). The agent can derive a sub-goal to find out whether F is available at time T (G' =
"know if F is available at time T") and thus the agent intends to find out this information
(I = "find out if F is available at time T"). Would it make any sense to ask the personal
assistant agent of F, agent j: "Did F play a video game yesterday?". Well, no matter
what the answer to this question would be it would not help agent i know whether F is
available at time T. However, if agent i acts more rationally, he would ask agent j "Can
you tell me if F is available at time T?", and thus act in a way it hopes it will satisfy his
intention and meet his goal. agent i is thus assuming that agent j knows the answer and
it will share the information with agent i. However, simply on the basis of having asked,
agent i cannot assume that agent j will act to answer: agent j is independent and can
have a different goals.

So, an agent plans to meet its goals by communicating with other agents. The agent will
perform speech acts based on the relevance of their expected outcome or rational effect
in relation to its goals. However, it cannot assume that the rational effect will inevitably
result from sending the messages.

This communication model is at the heart of the FIPA model for agent systems. A
message contains a set of one or more message parameters, out of which the only
mandatory one is the performative, although it is expected that most ACL messages will
also contain sender, receiver and content parameters. The complete list of parameters
mandated by [FIPA00061] and is given in Appendix 8.1. Additional message
parameters can be added by specific implementations as long as their name starts with
"X-".

Returning to our example involving personal assistant agents, agent i can ask agent j if
F is available at time T using the following ACL Message:

(query-if
:sender (agent-identifier :name i)
:receiver (set (agent-identitfier :name j))
:content "((available (person F) (time T)))"
:reply-with r09
:language fipa-sl)

Agent j could reply that F is not available:

(inform
:sender (agent-identifier :name j)
:receiver (set (agent-identifier :name i))
:content "((not (available (person F) (time T))))"
:in-reply-to r09
:language fipa-sl)

The two ACL messages above are encoded as strings [FIPA00070] and their contents
confirms to the FIPA Semantic Language [FIPA00008]. The other content description
language experimentally supported by FIPA are [KIF], [CCL] and, what we find more
interesting [RDF] (RDF will be discussed in a following section). Although the

13

[FIPA00011] specification is still experimental it proves that it is meaningful to use
RDF as a content language. We will examine this possibility in the next chapter. Here
we will only give the answer of agent i expressed in RDF, using an XML encoding
[FIPA00071] and a SOAP envelope. Note that the exact form of the SOAP envelope is
not (yet) standardized.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<!-- non-standard header -->
<soap:Header>

<fipa:from xmlns:fipa="http://www.fipa.org"
soap:role="http://www.w3.org/2003/05/soap-envelope/role/next"
soap:mustUnderstand="false">http://host.of.i.com</fipa:from>

<fipa:receiver xmlns:fipa="http://www.fipa.org"
soap:role="http://www.w3.org/2003/05/soap-envelope/role/next"
soap:mustUnderstand="false">http://host.of.j.com</fipa:receiver>

<fipa:acl-representation xmlns:fipa="http://www.fipa.org"
soap:role="http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver"
>xml</fipa:acl-representation>

<!-- other infromation may follow -->
</soap:Header>
<soap:Body>

<fipa-message act="query-if">
<sender>

<agent-identifier>
<name id="i"/>

</agent-identifier>
</sender>
<receiver>

<agent-identifier>
<name id="j"/>

</agent-identifier>
</receiver>
<content>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<ex:Person xmlns:ex="http://www.example.com">

<ex:id>http://www.example.com/persons/F</ex:id>
<ex:available-at>T</ex:available-at>

</ex:Person>
</rdf:RDF>

</content>
<reply-with>r09</reply-with>
<language>rdf</language>

</fipa-message>
</soap:Body>

</soap:Envelope>

All the FIPA ACL communicative acts and their exact semantic definitions are
standardized by FIPA. They are are listed in Appendix 8.2. and summarized in Table 1.
Moreover FIPA has standardized many common used interaction protocols using
communicative acts, which we enlist in Appendix 8.3.

14

Performative Description
accept-proposal The sender accepts a previously submitted proposal to perform an

action.
agree The sender agrees to perform some action, possibly in the future.
cancel Inform the receiver that the sender no longer has the intention that

the receiver performs a previously requested action.
cfp The action of calling for proposals to perform a given action.
inform The sender informs the receiver that a given proposition is true.
not-understood The sender did not understand a message previously received from

the receiver.
query-if The sender asks the receiver whether a given proposition is true.
refuse The sender refuses to perform a given action, and explains the

reason for the refusal.
reject-proposal The sender informs the receiver that it has no intention that the

recipient performs the given action under the given preconditions.
request The sender requests the receiver to perform some action.

Table 1: Examples of Frequently Used FIPA ACL Performatives

In order to exemplify the way different communicative acts are used to create to
complex interaction protocols we will further examine the FIPA Contract Net
interaction protocol [FIPA00029]. Illustration 5 provides a graphical representation of
the steps involved in the normal operation of this protocol. For simplicity, issues like
error handling were omitted.

15

The initiator of the FIPA Contract Net protocol requests proposals from other agents by
issuing a cfp act (call for proposals). This message specifies the task, as well as any
other supplementary conditions such as the maximum price or duration the it is placing
upon the execution of the task etc., and a deadline by which replies should be received.
The deadline helps prevent the case when the initiator would have to wait indefinitely
for all the answers to arrive, so proposals received after the deadline are automatically
rejected. The participants receiving the call for proposals are viewed as potential
contractors and they may generate responses. Some of them will be proposals to
perform the task, specified as propose acts which includes the preconditions that the
participant is setting out for the task, while other participants may refuse to make a
proposal.

Once the deadline passes, the initiator evaluates the received proposals and selects the
agents to perform the task (one, several or no agents may be chosen). The accepted
agents will be sent an accept-proposal act and the remaining ones will receive a reject-
proposal act. Once the initiator accepts the proposal, the participant has the obligation
to perform the task and when it is has it, the participant sends an inform message to the
initiator. However, if the participant fails to complete the task, a failure message is sent.

3.5 Message-Oriented Communication
Several abstractions can be provided over the interface of the transport layer in a
computer network, and a quite popular one is message-oriented communication. This
allows messages to be sent back and forth between two or more network hosts. The

16

Illustration 5: FIPA Contract Net Interaction Protocol

Initiator Participant

cfp

deadline

refuse

propose

failure

inform

reject-proposal

accept-proposal

services provided by the communication system can range from almost nothing (e.g.
plain UDP) to persistent and reliable communication. After a short digression on
synchrony we will examine communication persistence and reliability.

Synchronous vs. Asynchronous
Asynchronous communication is very simple: the sender continues to execute
immediately after it has submitted it's message for transmission.

Synchronous communication is a little more complex; it actually comes in two
"flavors":

• receipt-based: the sender is blocked until the message has reached the
destination and an acknowledgment has returned;

• response-based: the sender is blocked until the receiver has processed the
message and the result of the processing has returned to sender (see Illustration
6).

Persistent vs. Transient
Almost all transport protocols are transient, that is: messages are stored by the
communication system only for as long both sending and receiving applications are
executing. For example the Internet Protocol offers transient communication only. If
any router cannot find an appropriate destination to forward the packet immediately it
will simply discard it.

When persistent communication is used, the transmitted messages are stored by the
communication system as long as it takes in order to deliver them to the receiver.
Neither the sender, nor the receiver have to be up and running for message transmission
to occur. Persistence increases the reliability of the communication. If for any reason
the receiver fails, the senders can continue to send messaged that will simply
accumulate in a message store and will be processed when the receiver comes back on-
line. This is particularly useful when dealing with unreliable networks or limited

17

Illustration 6: Asynchronous vs. Synchronous Communication

S R S R S R

Asynchronous Synchronous
(receipt-based)

Synchronous
(response-based)

connectivity, very common for wireless networks. A good example of a persistent
communication protocol is SMTP, the protocol used for electronic mail on the Internet
[RFC2821]. Electronic mail is however different from the other persistent
communication systems we will present, by the fact that it is primarily aimed at end
users, and not applications.

More elaborated systems that provide persistent asynchronous communication are
typically called Message-Queuing (MQ) Systems or Message-Oriented Middleware
(MOM); such as the old IBM MQSeries (rebranded now [WebsphereMQ]). There are
many other such systems built by various vendors or by the open source community.
These systems are principally used for enterprise application integration (EAI), but they
can also be used for electronic mail, workflow, groupware and many other tasks.

In a message-queuing system, applications communicate by inserting messages in
specific queues owned by one or more applications. Messages can only be sent to (or
read from) queues that are local to the sender. Each message is forwarded over a series
of communication serves until it reaches its destination queue, identified by a unique
queue identifier. The queue owner can then read the message at any given time.

The principal problem with message-oriented middleware the lack of interoperability
due to the lack of standards. All the major vendors have their own implementations,
each with its own API and proprietary management tools. J2EE provides a standard API
for accessing MOM systems, called Java Message Services (JMS) that most vendors
have implemented. However, this solution is not available to users of other
programming languages. Since J2EE is the framework used by ADF we we will further
examine JMS in Section 3.9.

Reliable vs. Unreliable
Unreliable communication is usual to best-effort protocols like the Internet Protocol. As
the term best-effort implies, no guarantees whatsoever are given that a message
(package in the case of IP) will actually make it's way the destination, or it will not
arrive more than once, or that multiple messages will reach the destination in exactly the
order they were sent.

Reliable communication provides this kind of quality-of-service guarantees, under one
of the following three delivery semantics: At-Least-Once, At-Most-Once and Exactly-
Once. If the communication system is not capable of delivering a message under the
given constraints, it will notify the sender of the failure. One additional reliability
provision is In-Order delivery. Stream-oriented protocols like TCP offer Exactly-Once
and In-Oder delivery, while message-oriented transient protocols usually don't. SMTP
[RFC2821], although persistent does not offer reliable end-to-end message delivery (it
can, however, provide acknowledgments for successfully delivered messages). If an
email router disastrously fails (e.g. hard drive failure) then all the ongoing messages it
stored, will be irremediably lost, and the senders will not be informed in any way. This
means that persistence does not automatically imply reliable communication.

Reliable asynchronous messaging is a key building block for service-oriented
architectures (the subject of our next section) and for multiagent systems alike. If an

18

agent needs a small piece of data from another agent then it might be acceptable for the
first agent to just wait for a message. But what happens when the message gets lost or is
delayed for any reason? Should the sender keep waiting forever? Should it assume that
his request got lost and just submit another? Should it assume that the response got lost
and wait for the other agent to retransmit it? There are no easy answer to these
questions; other than using reliable asynchronous messaging.

HTTPR was an early attempt by IBM to provide a protocol on top of HTTP for the
reliable transport of messages over the Internet [HTTPR]. Unfortunately, IBM was
unable to rally sufficient industry agreement around HTTPR. The two current divergent
directions for reliable messaging are [WS-ReliableMessaging] (a protocol supported by
IBM, BEA and Microsoft) and [WS-Reliability] (an OASIS standard). And while both
specifications address the same issues, they do so in different, incompatible ways. This
situation helps no one and, unless a compromise is reached, it is very likely to continue.

3.6 Service-Oriented Architectures
A Service-Oriented Architecture (SOA) is an architectural style whose goal is to
achieve loose coupling among interacting software agents. A service is a unit of work
done by a service provider, to achieve desired results for a service consumer. A flexible
mechanism permits a consumer to discover the providers that offer the services it needs.
Both provider and consumer are roles played by software agents on behalf of their
owners.

Loose coupling is obtained in a SOA by defining a small set of simple generic
interfaces that are universally available to the participating software agents. The
interaction between them is done via descriptive messages exchanged through the
standard interfaces and constrained by an extensible schema, thus allowing new
versions of services to be introduced without breaking existing services. This approach
reduces artificial dependencies between the interacting components and is different
from object oriented programming, which suggests that data and its processing should
be bound together [He, 2003].

Many multiagent systems are built as Service-Oriented Architectures. Agents consume
the services provided by other agents in order to be able to provide their own
specialized services. This is meaningful because it allows every agent to specialize only
one or several tasks it does very well, while delegating the other tasks to other expert
agents. Most of us are smart enough to realize that we are not smart enough to be expert
in everything. The same principle applies to software engineering where it is called
separation of concerns.

Since large-scale distributed systems tend to be extremely heterogeneous, there are very
few generic interfaces universally available, so the application-specific semantics must
be expressed in the messages themselves. There are three fundamental properties the
messages transmitted over the interfaces of a SOA must have: descriptive, restricted
and extensible. The messages must be descriptive because the service provider is
entirely responsible for solving the problem, so choosing the way it achieves this is
solely its concern. Limiting the vocabulary and structure of messages is also a necessity

19

for interoperability in any distributed system. The more restricted a message is, the
easier it is for the receiver to understand the message. However, this comes at the
expense of reduced extensibility, which is very important if the architectures are to
evolve to meet their ever changing requirements. If messages are not extensible,
consumers and providers will both be locked into one particular version of a service, so
extensibility is not just a good design practice for a SOA but a fundamental necessity.
Software designers must weigh the trade-off between interoperability and extensibility
and come up with the just the right balance.

There are additional constraints that can be applied on a SOA in order to improve it's
performance, scalability and reliability. The most important are idempotent requests and
stateless service. Requests are idempotent if their duplication by a software agent has
the same effects as a unique request. This allows providers and consumers to improve
the overall service reliability by simply repeating the request if faults are encountered.
A service is stateless when each message sent by a consumer contains all the necessary
information for the provider to process it. This constraint makes the service provider
more scalable because the provider does not have to store conversational state between
different requests. There are no intermediate states to worry about, so recovery from
partial failure is also relatively easy, making the service more reliable.

However, not all services can or should be made stateless. The other possibility is to
establish a session between the consumer and the provider, and the compelling reason to
do so is efficiency. For example, the overhead produced by having to exchange security
certificates and do authentication, can be limited to the establishment of the session,
which greatly improves performance. Also services that allow customization are very
good candidates for being stateful. Stateful services require both the consumer and the
provider to share the same consumer-specific context, which is either included in or
referenced by messages exchanged between the provider and the consumer. The
drawback of this approach is that it may reduce the overall scalability of the service
provider, because it now needs to remember the shared context for each consumer. It
also increases the coupling between a service provider and a consumer, and makes
switching service providers more difficult. Still, in many cases there is not simple way
to avoid this.

Because some people fail to notice the difference between SOAs and traditional
distributed objects systems (like DCOM, Java-RMI or CORBA) we will mention it here
one more time: unlike traditional object-oriented architectures, SOAs comprise loosely
coupled, highly interoperable services that asynchronously exchange descriptive self-
contained messages. Table 2 should make it clear where the differences are:

20

Tightly Coupled Loosely Coupled
Connection Direct Connection Message Broker
Communication Synchronous Asynchronous
Interaction Type Remote Procedure Call Message Passing
Type system Strong Typed Weak Typed
Control Centralized Distributed
Service discovery and binding Static Dynamic

Table 2: Differences Between Tightly Coupled and Loosely Coupled Architectures

We will further examine SOAs in the next sections, in the context of web services and
message oriented middleware, and then in Chapter 4, when we present the ADF
architecture. However, for a more in depth introduction to SOAs and their use in
enterprise applications we refer the readers to [Krafzig et al., 2004] and [Chappell,
2004].

3.7 Web Services and SOAP
According to the Web Consortium [W3C], a Web service is a software system designed
to support interoperable machine-to-machine interaction over a network. It has an
interface described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP [RFC2616] with an XML
serialization in conjunction with other Web-related standards [WSA]. This definition
should give the reader a hint about what web services really are: a vague term
describing a collection of protocols and open standards for exchanging data between
software applications written in various programming languages and running on various
platforms. [OASIS], the W3C and the [WS-I] are the steering organizations responsible
for standardization of web services.

The basic technology behind web services is [SOAP] and its relation to the other Web
standards is depicted in Illustration 7. SOAP provides a simple framework for
exchanging XML messages between an initial SOAP sender and an ultimate SOAP
receiver [SOAP Primer, 2003].

21

The simplest such exchange is a request-response pattern, which use was
overemphasized by earlier SOAP versions as the means for conveying remote procedure
calls (RPC). However, it is important to note that SOAP request-response exchanges do
not have to to be modeled as RPCs. In fact SOAP RPC web services are not service
oriented architectures, while document-centric SOAP web services are. This is because
SOAP RPC "tunnels" application-specific RPC interfaces though an underlying generic
interface. Effectively, it prescribes both system behaviors and application semantics.
Because system behaviors are very difficult to prescribe in a distributed environment,
applications created with SOAP RPC are not interoperable by nature. RPC also tends to
be instructive rather than descriptive, which is against the spirit of SOAs. SOAP allows,
however, for much richer conversational patterns, where the semantics are at the level
of the sending and receiving applications. This is in fact a very important requirement of
agent communication.

22

Illustration 7: Web Services Architecture Stack

A SOAP message is an XML document with a simple structure. The outermost element
is the SOAP envelope which contains an optional SOAP header and a mandatory SOAP
body. The SOAP header holds a collection of SOAP header blocks, which can be
targeted at any SOAP receiver within the SOAP message path. The header contains
relevant information about the message, for example authentication information,
encryption method or transactional context. The SOAP body contains the information
explicitly targeted to an ultimate SOAP receiver in the form of XML data, or, in the
case of error, a SOAP fault. A very simple SOAP message is given below (a more
complex one was given in the previous section as an example).

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>
<t:transaction xmlns:t="http://travel.example.org/transaction"

env:encodingStyle="http://example.com/encoding"
env:mustUnderstand="true">673566</t:transaction>

</env:Header>
<env:Body>

<m:chargeReservationResponse xmlns:m="http://travelcompany.example.org/"
env:encodingStyle="http://www.w3.org/2003/05/soap-encoding">
<m:code>FT35ZBQ</m:code>
<m:viewAt>http://travel.example.org/reservation?code=069045</m:viewAt>

</m:chargeReservationResponse>
</env:Body>

</env:Envelope>

SOAP messages can be carried by a variety of network protocols such as HTTP, SMTP,
FTP, RMI/IIOP, or a proprietary messaging protocol. However, the only normative
binding for SOAP 1.2 messages is to HTTP 1.1 [RFC2616]. So, all the other choices for
the transfer of SOAP messages are possible, but they are not standardized at this time.
We will examine a JMS binding in chapter 5.

One major design goal for SOAP is simplicity and this is achieved by omitting, from the
messaging framework, features that are very important in distributed systems, such as:
reliability, security, correlation, transactions, routing, message exchange patterns and
others. The good news it that the other design goal for SOAP is extensibility, so it is
anticipated that these features will be defined as extensions to SOAP.

It is expected that the second-generation "WS-*" web services standards will fix these
issues and allow web services to become a full-featured, loosely-coupled service-
oriented architectures [Kaye, 2003]. New standards like [WS-Reliability]/[WS-
ReliableMessaging], [WS-Coordination], [WS-Security], [WS-Transaction] or
[WSBPEL], are very promising for business, but also for agent communication, and
surely need further investigation [Erl, 2004]. However, until these standards gain
enough community support and compliant implementations they are not very useful in
practice.

Finally, a non-formal yet widely-used architectural style for building large-scale
networked applications, that rivals with SOAP-based web services, is REST [Fielding,
2000]. REST defines identifiable resources via URIs, and methods for accessing and
manipulating the state of those resources by means of standard HTTP. REST
proponents argue that HTTP itself is sufficiently general to model any application
domain. REST is an architectural style without a concrete specification, and while the

23

pragmatic approach surely has its merits, we fear that it is not going to meet the need for
interoperability of our agent framework. We will not examine REST in more detail, but
for further information please consult the [RestWiki].

3.8 Java 2 Platform, Enterprise Edition
The Java 2 Platform, Enterprise Edition (J2EE) is an environment for developing and
deploying enterprise applications. The J2EE platform consists of a set of services,
application programming interfaces (APIs), and protocols that provide the functionality
for developing multi-tier applications. J2EE multi-tiered applications are generally
considered three-tiered because they are distributed over three locations: client
machines, the J2EE server machine, and the enterprise information server (Illustration
8).

J2EE applications are made up of self-contained components like:

• Java Servlets - web components that run in a Web container.

• Enterprise JavaBeans (EJB) - business components that run in an EJB container.

J2EE components are composed of compiled Java classes, deployment descriptors
(XML files containing deployment information) and other resources, all archived into a
single ZIP file (the extension is actually JAR or WAR). They are run and managed by a
J2EE server such as the Sun Java System Application Server, the IBM WebSphere
Application Server or the open source JBoss Application Server [JBoss]. An application
server has to provide both an EJB container and a Web container such as Apache
Tomcat [Tomcat].

Servlets
A Java servlet is a Java class that is designed to respond with dynamic content to client
requests over a network. The generated content is commonly HTML and is served over
HTTP, but servlets are more general than this, and XML data is also a popular choice.

24

Illustration 8: J2EE Multi-Tiered Applications

Client J2EE Server Enterprise
Information
Server (EIS)

Database

Web Container

EJB Container

Web Browser

J2SE

Java Client

Servlet JSP

EJB EJB

Creating servlets is simple and requires just extending a class. Other technologies, such
as JavaServer Pages, are compiled into servlets before actual use.

Enterprise JavaBeans
Enterprise JavaBeans are components that implement business logic. The EJB provides
a standard distributed-component model that simplifies development and allows beans
to be easily deployed on any J2EE compliant application server.

There are three types of enterprise beans: session beans, entity beans, and message-
driven beans. Entity beans represent raws in a database table and are probably the most
controversial J2EE technology. We will not use these type of beans so our discussion
about entity beans ends here. Session and message-driven beans are presented in the
next subsections.

Good reference books on enterprise beans in general are [Burke et al., 2004], [Matena et
al., 2003], [Marinescu, 2002], [Sullins and Whipple, 2003]. However, many people find
EJBs too old and heavyweight and propose a more lightweight approach [Gehtland and
Tate, 2004], [Johnson and Hoeller, 2004] and [Walls and Breidenbach, 2005]. We will
try to avoid the common pitfalls of EJB but use them nevertheless, unless until a more
lightweight standard component technology takes it's place. A very good candidate for
this is the upcoming EJB 3.0 specification that has the stated goal of improving the EJB
architecture by reducing its complexity from the developer's point of view [EJB3].

Session Beans
Session beans are enterprise components that describe interactions between enterprise
beans (taskflow) and implement particular tasks, thus shielding the client from the
complexity of the business logic. Session beans are not persistent and come in two
flavors: stateless and stateful.

Stateless session beans are lightweight and very efficient so a few stateless session bean
instances can serve hundreds and possibly thousands of clients. Because they don't
maintain any conversational state for a particular client, the EJB container can create
multiple equivalent instances of a stateless session bean class, and choose any of them
to service a particular method invocation. Stateless session bean instances can be simply
discarded when they are not needed any more, or when the server is low on memory,
thus removing the need for a passivation mechanism. Finally, stateless session beans are
the only type of enterprise beans that can easily implement RPC-based web services.

25

Stateful session beans are dedicated to only one client for the life of the bean's instance;
as they maintain conversational state between requests. They are not swapped among
clients or kept in an instance pool like and stateless session bean instances. Once a
stateful session bean is instantiated and assigned to an EJB object, it is dedicated to that
client for its entire life cycle (Illustration 11). When the EJB container needs to
conserve resources, it can serialize the conversational state to secondary storage and
evict stateful session beans from memory. When the client of the now passivated
instance invokes a method, a new bean instance is created and populated with the state
from the initial bean. This mechanism is called passivation respectively activation,
depending on the viewer's perspective.

Java Message Service
The Java Message Service (JMS) is a standard API that provides access to a message
queuing system (systems for persistent asynchronous communication were already
examined in Section 3.6). JMS clients send messages asynchronously to a destination
(topic or queue), from which other JMS clients can receive them at any time. Receiving
messages is however blocking (a timer can be used to prevent deadlocks) for all JMS
clients except for Message Driven Beans.

JMS supports both the point-to-point and the publish/subscribe messaging models, with
a single, generic API. In the point-to-point model, each message has only one consumer

26

Illustration 10: The Life Cycle of a
Stateful Session Bean

Does Not Exist

Method-Ready

ejbRemove()
Class.newInstance()
setSessionContext()
ejbCreate()

bussiness
method

Passive

ejbPassivate()
ejbActivate()

Illustration 9: The Life Cycle of a
Stateless Session Bean

Does Not Exist

Method-Ready
Pool

ejbRemove()
Class.newInstance()
setSessionContext()
ejbCreate()

bussiness
method

and there are no timing dependencies between sender and receiver. In the
publish/subscribe model each message can have multiple receivers, and a client can
consume only messages published after he has created a subscription.

The principal advantage of JMS is that it provides asynchronous and persistent
communication and thus and thus enforces loose-coupling between the communicating
components. The major disadvantage is that it is hard to use outside an administrative
domain because the underlying protocols are usually proprietary. For more information
about JMS please consult [Haase 2002] or [Monson-Haefel and Chappell, 2001].

Message-Driven Beans
A message-driven bean is an enterprise bean that processes messages asynchronously.
Historically, message-driven beans have been based on the JMS technology, but now
other messaging technologies can be used as well. JMS-based message-driven beans are
assigned during deployment to the queue or topic that they will process. When a
message arrives to a particular destination, the container calls the corresponding
message-driven bean's onMessage method that processes the message.

Like the stateless session beans examined earlier message driven beans are do not retain
data or conversational state specific to a client. And because all instances of a message-
driven bean are equivalent, the EJB container can instantiate as many beans as it finds
necessary, in order to allow messages to be processed concurrently.

Java Naming and Directory Interface
As its name implies, the Java Naming and Directory Interface (JNDI) provides naming
and directory functionality. Because JNDI is independent of any specific
implementation, applications can use it to access multiple naming and directory
services, including LDAP, NDS, DNS, and NIS. For more information on JNDI, please
consult the [JNDI Tutorial].

27

4. The ADF Architecture

This chapter will present the architecture of the Agent Developing Framework (ADF).
We start by introducing the main goals of the framework, and then we present the
overall design, the technologies and the methodology that will allow us to achieve them.
A lot more about the ADF architecture can be found in this specialized thesis [Nichifor,
2004], and we will not repeat here the aspects which we think were addressed there
properly.

4.1 Goals
In this section we present in considerable detail the goals that should be met in order to
make building multiagent systems worth the effort. Several goals were originally set
for ADF by its initial developer and are given in this technical report [Nichifor and
Buraga, 2004]. We will refine them here, and present several new goals, not mentioned
in the above-mentioned technical report, but which are nevertheless very meaningful
and in the spirit of the original ADF. We will also make a clearer distinction between
the goals of the project and the general ways to achieve them. Please note, that the goals
given here are set for the agent framework as a whole and not just for the agent
communication part, implemented by the author and the main subject of this thesis.

Interoperability
Interoperability is a goal of extreme importance for ADF. It characterizes the extent by
which ADF agents will be able to communicate and interact with entities in other
systems, whether they are agents themselves, or more traditional applications, even with
those that were not foreseen during the original development. In our view, using open
standards is the only possible way to achieve true interoperability in a large-scale, thus
heterogeneous, environment. However, the fact that a specification is public is often not
enough to ensure interoperability, it should be also complete and neutral [Blair and
Stefani, 1998]. Complete specifications make it unlikely for implementers to have the
need to add implementation-specific extensions, that break interoperability. Neutral
specifications do not prescribe how their implementations should look like and are not
biased towards the technologies of a particular vendor.

Extensibility
The ability to easily add new features, or reimplement existing ones using different
technologies, without impacting the operation of the system as a whole, makes a system
extensible. In a rapidly evolving domain such as computer science, a system that is not
extensible will become obsolete very quickly, in the extreme case even before it is
released. When designing a software system, evolution should be regarded as something
inevitable, that has to be planed for in advance (design to accommodate change).

28

Modular design, programming to standard interfaces and not implementations,
separating policy from mechanism, supporting technology heterogeneity, orthogonality
and loose-coupling between components are the most important ways to achieve
extensibility.

Platform Independence
Platform independence is extremely desirable in large-scale thus highly-heterogeneous
environments, such as the Internet. Agent systems have to accommodate all kinds of
platforms, so if the same code can be executed with no regard to the platform, a great
amount of developing time is saved. Our agent framework should not be dependent on a
particular hardware configuration, operating system or an application server, and all the
dependencies to third-party components should be modeled through standard interfaces.

Scalability
The scalability of a system can be measured on three dimensions [Neuman, 1994]: size,
geographical and administrative. Scalability in respect to size is probably more familiar
to the reader. For a multiagent system, scalability in respect to size is measured by the
number of agents the system can accommodate while maintaining an acceptable
performance. Centralization is "the worst enemy" of size scalability, whether we refer
to centralized data, services or algorithms.

A multiagent system is geographically scalable if the agents may be very far from one
another, and still they are able to interact efficiently. Geographical scalability is
hindered too by centralization, but also by synchronous communication because of the
very long waiting times involved.

Finally, a multiagent system is administratively scalable, if it can accommodate many
different organizations that exert control over pieces of the system. The major problems
involved here are management, payment, security and trust.

Several solutions to the scalability problem that can be applied to our agent framework
are:

• Distribution, as opposed to centralization, suggests dividing a large problem into
smaller parts that are to be solved by autonomous specialized agents, distributed
all around the network.

• Replication is meaningful when an agent offers a service that is used by many
other agents, thus making the first agent a communication bottleneck. If
replicating the agent is possible without affecting the semantics of the service it
provides (replication transparency) then the size scalability problem is solved.

• Peer-to-peer is an network topology that eliminates centralization, by removing
the distinction between servers and clients. Peer-to-peer fits very well with the
agent paradigm where agents are usually all treated as equals, but also for the
underlying network connecting the agent hosts in a decentralized way.

• Asynchronous communication - minimizes waiting times when communication

29

delay is considerable. Asynchronous communication has also many other
advantages not related to scalability, the most important one is the fact that is
enforces lose-coupling.

• Agent mobility - can decrease the overall network load and the communication
delays by localizing computation. Other good reasons for having mobile agents
are given in [Lange and Oshima, 1999]: the ability to adapt dynamically,
protocol encapsulation, natural heterogeneity, robustness and fault tolerance.

Transparency
Multiagent systems are inherently distributed across multiple networked machines. An
important goal is being able to hide from the agents the fact that resources are
distributed, and present the system as if it was running on a single machine [Tanenbaum
and van Steen, 2002]. This concept of distribution transparency can be applied to many
different aspects of a multiagent system:

• Location transparency refers to the fact that agents cannot easily tell where a
resource is physically located in the system. Using logical names such as URIs
[RFC2396] or other globally unique identifiers to reference resources while
providing a naming service that will automatically convert these names into the
corresponding addresses is usually enough in order to provide location
transparency.

• Concurrency transparency would allow agents to share resources (e.g. processor
time, memory space, communication channels, high-level services and other) in
a cooperative way without noticing that the resources are, in fact, being shared.
Resource replication (where possible), locking mechanisms and transactions are
some of the ways to achieve concurrency transparency in an multiagent system.

• Persistence transparency deals with masking weather an agent is loaded in main
memory (active) or written on disk (persisted). Persisting agents is a very
important operation if scalability is to be achieved. When processing resources
are scarce and there are simply too many agents to allow the whole system to
function at normal throughput (or to function at all), it is meaningful to have
only some of the agents active at any given time, while the others are persisted.
Persistence transparency, means that the agents will be unaware whether they
are being persisted or not. This kind of transparency is important, because it
allows one to build a simple programming model for the agents, while not
sacrificing scalability.

• Failure transparency means that the agents should not notice that a failure
occurred and the system recovered from it, and the system as a whole should
continue to operate even in the presence of failures. Perfect failure transparency
is very hard to achieve, even impossible under realistic assumptions. One reason
for this, is that it is impossible to tell for example if a resource is unavailable
because of a failure, or it is slow, or it is simply overwhelmed with requests.
However, in loosely-coupled systems, where communication is asynchronous
and reliable, failures are much easier to mask than in traditional, highly-coupled

30

systems.

• A multiagent system in which mobile agents can migrate from one host to
another, in a way that is transparent to the other agents, is called migration
transparency. This would allow for example an agent to migrate without
affecting its ongoing communication with other agents.

• Even stronger than migration transparency, and thus harder to achieve, is
relocation transparency. Relocation transparency would allow a mobile agent to
be migrated from one platform to another, without the agent itself being able to
notice the that it is being migrated. This would allow load balancing to occur,
without having to deal with it in any way when programming the agents.

Please note that even though aiming for distribution transparency is a good goal when
designing a multiagent system, this issue should be considered only together with other
issues, such as performance and scalability. There are also situations when hiding all the
distribution aspects is nearly impossible to achieve (e.g. relocation transparency or
failure transparency) or not a good idea at all. For example, allowing an agent to find
out the physical location of several identical resources, could permit the agent to select
the nearest one, thus greatly reducing communication delay.

Easy to use
No matter how complex the multiagent system is, this complexity has to be hidden form
the users behind a simple and intuitive API. Programmers should be able to build simple
agents easily, even if they don't know much about the framework or all its features, and
then be able to evolve their skills gradually, as they use new and more advanced
functionalities. Distribution transparency is a very good way to provide a simple
programming model for the agents. Other important usability aspects include easy
installation, tools facilitating tasks like administration and debugging, or visual agent
design tools.

Security
Several important security objectives are illustrated in Table 3, adapted from [Menezes
et al., 2001]. The other way of looking at security is to identify security threats such as:
interception, interruption, modification and fabrication [Pfleeger and Pfleeger, 2002].
Very widespread these days are interruption attacks, such as distributed denial of
service, which are very hard to prevent.

31

objective description
access control restricting access to resources to privileged entities.
confidentiality keeping information secret from all but those who are authorized

to see it.
data integrity ensuring information has is not altered by unauthorized or

unknown means.
anonymity concealing the identity of an entity involved in some process.
non-repudiation preventing the denial of previous commitments or actions.

Table 3: Several Objectives of Security

But finding security objectives and/or identifying the security threats, and then just
stating that the system should be secure, is not the way to actually build a secure system.
What is actually needed for this is a security policy: an exact description of the actions
the entities (e.g. agents, users, framework components) are allowed to perform, and the
actions that are restricted or prohibited. Once a security policy has been established, it is
time to enforce it, by using security mechanisms such as: encryption, authentication,
authorization and auditing.

The mechanisms to enforce security in an agent system are very similar to the general
ones, used in classic distributed systems, and will not be further discussed here.
However, in the presence of mobile agents, providing a secure executing environment
for both agents and their hosts becomes a much more stringent problem. And, while
being able to protect a host form a malicious agent is a problem that can be adequately
dealt with nowadays, by using virtual machines and sandboxes, the problem of
protecting an agent from the malicious host that executes it, is a much harder problem.
The Ajanta platform was the testing ground for many innovative ways for protecting
agents and their results are presented in [Karnik and Tripathi, 1999]. It is possible
however, that the overhead of providing security for mobile agents, is bigger that the
benefits of having mobile agents.

Pragmatism
While the theoretical foundations of the platform are important enough, more important
is the practical applicability of the theoretical methods in the actual implementation.
Some good pragmatic principles are:

• Solving real-world problems. Case studies and examples are good, but if we
want the framework to be really useful, then actual implementation of real-world
scenarios is needed.

• Technology re-use rather than re-invention - Use mature existing technologies
whenever possible. Many of the "wheels" for building an agent framework
already exist, in one way or another, and need only to be put together.
Synthesizing existing research in the field is more effective and more honorable
than reinventing the "wheel" (or worse, "a flat tire"). Only where the existing
"wheels" are missing or are broken, it is meaningful to invent new ones. "The

32

whole then becomes greater than the sum of its different parts, and hence
novel!" [Nwana and Ndumu, 1999].

• Test driven development. Base all assessment on working code, and in order to
assure good working code write tests [Hamill, 2004].

4.2 Design Overview
ADF is built as a Java 2, Enterprise Edition (J2EE) application: a collection of
enterprise beans and web components that work together in order to provide the high-
level functionalities required by a multiagent platform (Illustration 11). ADF uses many
of the services provided by a J2EE application sever, via standard interfaces like: JNDI,
JMS, SAAJ, JMX, and other.

Proved platform independence is very important for any J2EE application. ADF was
implemented and tested using JBoss 4.0, a J2EE 1.4 certified application server. This
means that ADF will work with only minor changes (e.g. new deployment descriptors)
on any other J2EE compliant application server. Several tests were already completed
using the Sun Java System Application Server and support for more application servers
is planed in the future. JBoss was chosen for the reference implementation because it is
an open source, yet very powerful and widely used application server. For an
introduction to JBoss we refer the reader to [JBoss Getting Started, 2005], and for a
more in depth presentation we recommend the [JBoss Application Server Guide, 2005].

The ADF framework is divided into several collaborating components implemented
either as enterprise beans (e.g. ManagementBean, ContainerBean, RunnerBean,

33

Illustration 11: The ADF Agent Platform

J2EE Server
Web Container

EJB Container

JNDIJMS JMX

J2SE

SAAJWS

JNDIJMS JMX

J2SE

SAAJWS

Management

ManagementForgerSniffer

Transport Container Runner

LocalTransportBean and other) or as servlets (ManagementServlet, ForgerServlet,
SnifferServlet).

4.3 The Agent Management System
The agent management system (AMS) is a mandatory component of the every FIPA
compliant agent platform. It exerts supervisory control in the agent platform
(Illustration 12).

The agent management system is implemented in ADF as an enterprise bean, more
exactly, a stateless session bean called ManagementBean. Multiple, concurrent requests
can be serviced by several equivalent instances of this bean. This is a very important
mechanism to achieve vertical scalability, and is intensively used in ADF. Although the
bean itself is stateless, it uses the JNDI API to store information about the agents
registered with the platform. This information is shared by all the instances of the bean,
thus assuring a consistent behavior.

The ManagementBean is used internally by most other beans in the agent platform.
Nevertheless, it is also used by application clients (e.g. servlets) in order to perform
administrative tasks on behalf of a user. There are three steps to be followed, before this
is actually possible:

• First, we obtain an initial JNDI context for the particular application server. For
example, when using JBoss, this would be achieved by using the following code
snippet:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
env.put(Context.URL_PKG_PREFIXES,
 "org.jboss.naming:org.jnp.interfaces");
env.put(Context.SECURITY_PRINCIPAL, "myname");
env.put(Context.SECURITY_CREDENTIALS, "mypassword");
env.put(Context.PROVIDER_URL, "jnp://localhost:1099");
Context ctx = new InitialContext(env);

• Then, we obtain a reference to the bean's remote home interface using the initial
context, and "narrow it" to the corresponding type:

34

Illustration 12: Overview of the ADF Architecture

Object o = ctx.lookup("ejb/Management");
ManagementRemoteHome home = (ManagementRemoteHome)
 PortableRemoteObject.narrow(o, ManagementRemoteHome.class);

• Finally, we run the create method on the remote home interface and acquire a
new remote reference to the ManagementBean.

ManagementRemote ams = home.create();

The remote reference can then be used to perform tasks such as creating and terminating
agents, or obtaining the results of their work. Access to these tasks can be restricted by a
security policy.

Creating new a new agent is a simple task, completed by the ManagementBean. First we
have to make sure the code of the agent is accessible to the application server. Since the
simple agents we present here, are part of the ADF package, no further actions need to
be taken. Otherwise, the mechanism to achieve this can vary depending on the
application server. With JBoss a simple way to do this, is to copy the jar file containing
the source of the agent to the deploy directory. Then we simply call one of the create
methods, like this:

ams.createAgent("MyHelloWorldAgent", "net.sf.adf.samples.HelloWorldAgent");

Or, if arguments need to be passed:

ams.createAgent("MyHelloAgent", "net.sf.adf.samples.HelloAgent",
 new String[] {"Marta", "Sergiu"});

This method will create both the agent and its container, and then schedule the agent for
execution by the RunnerBean. No further concerns need to be addressed by the agent
programmers in order to have their agents "alive".

The ManagementBean offers a white pages service to the agents and programs. This
allows an agent to be looked up by name in order to obtain a reference to its container
and opens the way to many other interesting operations:

ContainerRemote container = ams.lookup("MyHelloAgent");

The ManagementBean also allows clients to list the names of all the agents registered
with the platform:

java.util.List<String> agents = ams.listAgents();

Once an agent finishes its work, the results can be obtained by simply invoking the
getResult method:

Serializable result = ams.lookup("MyHelloAgent").getResult();

Trying to obtain the result of an agent before it is finished will result in an exception
being thrown. In this case, and many others, it can be useful to verify the state of the

35

agent first. We will examine the possible states in more detail in the next section. For
now, we will just give an example illustrating how the state of the agent can be checked:

if (ams.lookup("MyHelloAgent").getState() == AgentState.FINISHED) {
 result = ams.getResult("MyHelloAgent");
}

Finally, the ManagementBean has a very important role in the administration of the
different transport protocols, that are used simultaneously by the platform. We will
discuss this in more detail in the next chapter.

4.4 The Agent Container
The agent container is responsible for holding an agent and providing it controlled
access to the basic services of the framework. The agent container is the only entity to
hold a reference to the agent it contains and it uses it to manage its lifecycle. This way,
the agent's methods can only be called by the agent itself and its container, thus the
autonomy of the agent is guaranteed. The agent is not just a mere object, because it is
has complete control over its own lifecycle. The only exception to this general rule is
when the agent management system decides to immediately terminate the agent. This
may happen because the agent has not respected an important policy (e.g. the security
policy) or when the owner of the agent has explicitly asked for its termination (e.g.
when the agent is no longer responding to messages). Please note, however, that this is
just an exception, and the general rule is that the agent executes autonomously for as
long as it takes for it to complete its tasks.

The agent container functions as a façade that hides all the functionality of the
framework from the agent, and offers it a very simple API (the AgentContainer
interface). This API is generic and has no dependencies on other libraries (such as the
J2EE API) so that agents are not only simple to write, but the whole agent framework
could be reimplemented using any other technologies without affecting the existing
code of the agents. In fact, the code of the agents doesn't even need to be recompiled in
this case, a big plus for the extensibility of the framework. The agent container
functions in fact as a façade the other way around too, the Container local interface
hides the agent from the agent platform, in order to assure its autonomy (Illustration
13).

We give below the current AgentContainer interface to illustrate its simplicity. For
convenience the Agent class provides these methods too, delegating the work to its
container. Many of the these methods will be further discussed in this section.

package net.sf.adf.agent;

36

Illustration 13: The ContainerBean Seen as two Façades

import net.sf.adf.acl.ACLMessage;
import net.sf.adf.agent.task.Task;

public interface AgentContainer {
 AID getAID();
 org.apache.log4j.Logger getLogger();
 java.io.Serializable getArguments();
 void setResult(Serializable result);

 void send(ACLMessage message);
 java.util.Queue<ACLMessage> getMessageQueue();

 void addTask(Task t);
 void removeTask(Task t);
 void setTaskWaiting(Task t);
 void setTaskReady(Task t);
}

The agent container is implemented as a stateful session bean called ContainerBean. It
holds the only reference to the agent and references to many other, very important
objects: the agent's identifier, state, arguments, results, message queue, task scheduler
and logger (Illustration 14).

As previously mentioned, the agent container is responsible of managing the lifecycle of
the agent (Illustration 15).

37

Illustration 14: The Contents of the ContainerBean

ADF agents are always created by the ManagementBean and are immediately
associated with a container that will host them for as long as they live. It is only mobile
agents that can change their container, but still in a controlled way. Every agent is in the
NotExisting state, until the ManagementBean instantiates it and puts it in the Created
state. Immediately thereafter, the agent container invokes the setup method on the agent.
The default implementation of the setup method simply returns, but every useful agent
will override this method. The most usual thing to do in the setup method is to add tasks
that will be run later, because otherwise the agent will be finished immediately after
setup completes. If the agent has planed tasks however, it will be passed into the
Waiting state once the setup method completes. An agent will execute (move into the
Executing state) when the container receives a call from either the RunnerBean or a
message from one of the transport beans, and will return to the Waiting state once
processing is done. Mobile agents can mark themselves for migration (the
MarkedForMigration state) and they will be migrated (the Migrating then the Waiting
state) once processing is done. Finally, when the load on the J2EE application server is
high, it might decide to passivate the instances of stateful session beans, in our case, the
agent containers. When this happens the agent is set into the Passivated state, and it will
be made active again, as soon as the container is referenced, for example when a a new
message is received.

38

Illustration 15: The Lifecycle of an ADF Agent

Another service provided by the agent container to the agent is task scheduling. The
work an agent has to complete is divided into small tasks. This allows the agent code to
run non-preemptively into a single thread and, at the same time, be responsive to
asynchronous events, such as receiving a message or a notification of an expired timer.
Our task model is very similar to that adopted by [Jade], which we find very simple, yet
powerful (Illustration 16).

An active agent has a number of associated tasks at any given time, separated into two
categories: ready and waiting, according to whether they can make progress, or not. A
ready task is scheduled for execution every time the RunnerBean calls the run method
on the ContainerBean. The exact task that is to be run is chosen by the Scheduler,
according to a task scheduling algorithm, Round Robin for example. According to the
Jade model all waiting tasks are made ready every time a message is received. While
this may be simple and efficient for agents with several tasks, it doesn't scale well for
tens or hundreds of tasks. We believe, that it might be possible to improve this model by
using message patterns to decide which tasks need to be made ready, and which ones
don't. In such a model each task would only be woken up, when it can do something
meaningful, so programming tasks would be easier.

Now that we explained the agent lifecycle and task mechanism it is time to write our
first agent - the "Hello World" agent. The agent will have only one task, that will be run
only once, writing "Hello World" into a log file (managed by the container). The task
will be added during setup, and it will extend the OneShotTask class, a subclass of Task
that overrides the done method so that it always returns true.

package net.sf.adf.samples;

import net.sf.adf.agent.Agent;
import net.sf.adf.agent.task.OneShotTask;

public class HelloWorldAgent extends Agent {

39

Illustration 16: The Task Scheduling Model in ADF

 public void setup() {
 addTask(new OneShotTask() {
 public void run() {
 getLogger().info("Hello World");
 }
 });
 }
}

This is a very simple agent, so there is not much to explain, maybe except for the
anonymous inner class. That is just a shortcut here, we could have just given it a name
and put it outside the HelloWorldAgent class. The way to run this (and the following)
agent is already given in the previous section. There, we have also shown, how to pass
parameters to an agent, and retrieve its result. Here we present another simple agent that
uses the arguments and provides a result:

package net.sf.adf.samples;

import net.sf.adf.agent.Agent;
import net.sf.adf.agent.task.OneShotTask;

public class HelloAgent extends Agent {
 public void setup() {
 String[] args = (String[])getArguments();
 for (final String arg : args) {
 addTask(new OneShotTask() {
 public void run() {
 getLogger().info("Hello "+arg);
 }
 });
 }
 addTask(new OneShotTask() {
 public void run() {
 setResult("My name is "+getAID());
 }
 });
 }
}

The HelloAgents receives an array of Strings as an argument representing people
names, and it greets every one of them by logging to a file. Then it transmits his name
by running the setResult method. Once the agent is finished, the owner of the agent will
be able to retrieve this information and use it, for example by printing it on screen.

Probably the most important service the agent container provides to the agent is access
to asynchronous messaging. The container holds a message queue, where the agent can
receive messages, and also forwards the messages sent by the agent to the
corresponding transport(s). This mechanism is further examined in the next chapter.

4.5 Agent Runner
One other important component we have just mentioned previously is the RunnerBean.

40

It is a message-driven bean that is used internally by the framework to allow agents to
be run concurrently. The RunnerBean is a simplification of the Service Activator EJB
design pattern [Alur et al., 2003] that allows the invocation of business services, plain
Java objects, or EJB components in an asynchronous manner.

Every time a new agent is created and initialized it is put into the Waiting state. After
this, the ManagementBean sends an asynchronous message, containing a local stub for
the agent container, to the queue served by the RunnerBean. An instance of the
RunnerBean will process the message, deserialize the agent container stub and call its
run method, which will in turn run one task of the agent. Once the run method
completes, the done method of the agent container is executed, and, in the case it returns
false, the message is resent to the RunnerBean's own queue. This guarantees that the
cycle is restored, and the agent will be run again. If the done method returns true
however, the message will not be resent. Because the agent has no ready tasks to be run
the RunnerBean will no longer call the ContainerBean until the ContainerBean
explicitly sends one more message to the RunnerBean's queue, for example when more
tasks become ready because a message was received.

41

5. Agent Communication in ADF

Agent communication in ADF is message-oriented and closely follows the standard
model mandated my FIPA. A major concern when designing ADF was the
independence (orthogonality) between four different issues: the transport protocol, the
ACL message encoding, the message contents and the interaction protocol. This not
only assures much flexibility for the moment, but also provides a maximum degree of
extensibility. Message content languages and interaction protocols were already
examined in Chapter 3, so in this chapter we will focus only on transport protocols and
message encodings.

5.1 Transport Protocols
Messages are transported from one agent platform to the other using a transport
protocol. We already discussed two alternatives in Chapter 3: JMS and HTTP, and now
we will examine their implementation is ADF. But firsts, we will discuss how a ADF
transport works in general, and exemplify this on the simplest one: the local transport
that sends messages inside an agent platform.

First of all, ADF defines a transport as a class that implements the
net.sf.adf.transport.Transport interface, and this means providing an implementation to
the send method there. Sending messages is however not everything a transport does.
Generally, it will also receive messages in an asynchronous way. How exactly the
transport does this, is intentionally left unspecified, as it is very much dependent on the
particular transport protocol implemented. All three protocols we will present, also
receive messages, but each of them does it in a conceptually different way.

There are however, many similarities in the way different transports work in ADF, and
this is because the framework hides their inner workings from the agents and their
containers. When an agent wants to send a message it first sets the intended receiver
agent(s) and then runs its send method. This method forwards the message to the agent
container by default.

AID receiver = new AID("receiver_name", false);
receiver.getAddresses().add(new URI("http://example.com/adf"));
ACLMessage message = new ACLMessage(Performative.INFORM);
message.getReceiverSet().add(receiver);
/* probably set other message parameters as well */
send(message);

The agent container goes through the intended receiver list, and passes the agent
identifiers one at a time, to the ManagementBean. The ManagementBean holds a
mapping between URL-prefixes and their corresponding transports and will return, a
(possibly empty) set of transports. If the addresses explicitly given in the agent

42

identifier have no corresponding transports, or if there are no such addresses given (very
likely in real-world situations) then a global name resolution service could provide more
addresses for the agent.

In our example the ManagementBean will most likely return just the HTTP transport
(HttpSenderBean). However, if more than one address is present in the agent identifier
or is obtained form the naming service, it is very likely that more than one address will
be returned. No matter how many transports are returned, the agent container will try to
send the message to each of them in turn, until one of the sends succeeds (throws no
exception), or there are no more transports to try.

Generally speaking there are no guarantees whatsoever, that once a message is sent, it
will arrive to its destination. When using a persistent message-oriented transport the
chance that a message will be lost is usually very small, but still present. When using a
reliable transport protocol (as described in section 3.5) a message that gets lost will
always cause the sender to be notified, via a negative acknowledgment. The agent
container however, has to send the message as soon as possible, usually to many
different destinations (please note that the agent is blocked at this time because it shares
the same execution thread with its container). This means that if a message is lost, and
reliable communication is used, the negative acknowledgment will be later sent by the
transport to the agent itself, which will have to deal with it accordingly. The whole
process of sending a message to a single receiver is presented in Illustration 17.

When receiving messages, a similar (but reversed) interaction pattern is followed. The
transport has to forward it to the corresponding agents and to do this, it first uses the
agentLookup method of the ManagementBean to get a local reference to each agent
container. The transport then passes the message to each of the corresponding
containers, by calling their receive method. Once a message is received by the
container, it is added to the message queue. Receiving a message can also have other

43

Illustration 17: Example of Sending a Message in ADF

side-effects for the agent, for example when all the waiting tasks that could process the
received message become ready again. Anyway, the agent can choose whether it
processes the messages immediately, or just ignores them for some time, waiting for
some other event to occur (Illustration 18).

Local Transport
The LocalTransportBean is implemented as a stateless session bean, and deals with
messages sent to agents that are registered within the same platform. The
ManagementBean does not hold a URL prefix mapping for this transport, but always
holds a local reference to the LocalTransportBean. When a message has to be sent to an
agent that has the same platform identifier as the ManagementBean, the
ManagementBean will just return the LocalTransportBean to the container. True
location transparency is assured by the fact that the agent container has no easy way to
distinguish between a reference to a the local transport and one to a non-local transport.
The ContainerBean just sends the message to the transport as usual.

When a message is sent for transport to the LocalTransportBean, the bean acts as if it
received the message from the outside, it finds out the receiving local containers and
forwards the message to them. This process is transparent to all the beans with the
exception of the ManagementBean and the LocalTransportBean itself. The only way for

44

Illustration 18: Example of Receiving a Message in ADF

the receiving agent to find out whether a local transport is probably used, is by
comparing his platform identifier with the platform identifier of the sender.

HTTP Transport
Because the World Wide Web is already ubiquitous, it is no surprise that HTTP makes a
very good candidate for message delivery. This is accentuated by the fact that most
enterprise firewalls filter much of the Internet traffic for security reasons. Typically
almost all ports are closed to incoming and outgoing traffic, but port 80 has to be open
because it is used for web browsers. Web services tunnel everything through port 80,
and this is one of the reasons that makes the technology so appealing. Anyway, HTTP is
not limited in any way to HTML, XML or SOAP. So we have actually abstracted from
the encoding of the message itself, and built a generic HTTP transport.

Sending a message over HTTP requires first establishing a TCP connection to port 80
by on the receiving host and the transmitting data: first the "POST / HTTP/1.1" string,
followed by a number of informational headers, followed by the actual message using
an arbitrary encoding. The Content-type header is important because it is used to
describe the encoding used for the message, for example "text/plain" for string
encoding, "application/xml" for the XML encoding or "application/soap+xml" for the
SOAP encoding.

The HTTP transport is implemented as two distinct components: a stateless session
bean that sends messages (HttpSenderBean) and a servlet that receives them
(HttpReceiverServlet). The HttpSenderBean uses a HttpURLConnection to send
messages as follows:

ACLMessage message = /* ... */;
ACLCodec codec = /* ... */;
URI receiverURI = /* ... */;
URL receiverURK = receiverURI.toURL();
HttpURLConnection connection =
 (HttpURLConnection)address.openConnection();
connection.setDoOutput(true);
connection.setRequestMethod("POST");
connection.setRequestProperty("Content-type", "text/plain");
PrintWriter out = new PrintWriter(connection.getOutputStream());
out.print(codec.encode(message));
out.close();
connection.disconnect();

The HttpReceiverServlet is even simpler. It extends HttpServlet and just overrides the
doPost method:

protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 /* ... */
 String contentType = request.getContentType();
 ACLCodec codec = ACLCodecFactory.getCodec(contentType);
 // content length is in bytes

45

 int contentLength = request.getContentLength();
 if (contentLength == -1) {
 contentLength = MAX_CAPACITY;
 }
 BufferedReader reader = new BufferedReader(
 new InputStreamReader(request.getInputStream()));
 CharBuffer buffer = CharBuffer.allocate(1+contentLength/2);
 reader.read(buffer);
 ACLMessage message = codec.decode(buffer.toString());
 reader.close();
 /* ... */
}

The two examples above are surely contrived, since we left out some aspects such as
exception handling. However, they should demonstrate that transporting messages over
HTTP is quite an easy task, especially with the very good support offered by Java. We
already mentioned other advantages of HTTP, so what is still missing? The basic
problem is that HTTP itself doesn't provide guaranteed delivery. We already discussed
about reliable message-oriented communication in Section 3.5, and the fact that we are
still a long way to go from achieving this using just HTTP. In the next section we will
present the JMS transport, which is surely more reliable than HTTP, because it provides
persistent communication. However, we will see that this increase in reliability doesn't
come without it's costs, especially when considering performance and scalability.

JMS Transport
Many enterprise applications require very high reliability for the individual transactions,
and simple protocols such as HTTP are not enough. We already examined briefly the
Java Message Service API in Section 3.8 and persistent communication in Section 3.5
so here we will focus only on the implementation of the JMS Transport.

The JMS Transport has two components: a stateless session bean for sending messages
(JmsSenderBean) and a message-driven bean for receiving them asynchronously
(JmsReceiverBean).

Sending JMS messages is a quite complex task, so we will split it into more steps:

• First of all, we need to get the initial context for the JMS provider of the
receiving agent. Unfortunately, we do not know a standard way to do this, so we
will stick with JBoss and its message queuing system JBossMQ:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
env.put(Context.URL_PKG_PREFIXES,
 "org.jboss.naming:org.jnp.interfaces");
env.put(Context.PROVIDER_URL, "jnp://example.com:1099");
InitialContext initialContext = new InitialContext(env);

• Second, we use the JNDI initial context to look up the main queue of the ADF
platform, not accidentally called "queue/ADFQueue". We use the generic JMS
interfaces, so it makes in fact no difference whether we are dealing with a queue

46

or a topic.

Destination dest = (Destination)initialContext.lookup("queue/ADFQueue");

• Third, we set up a connection, a session and a producer. The connection to the
remote JMS provider is created by using a connection factory. In the case of
JBoss there are plenty connection factories we can choose from, and because the
actual selection happens in the JBoss-specific deployment descriptor of the bean,
we will just assume an appropriate factory is bound to
"java:comp/env/jms/ConnectionFactory" in the local initial context. Please note,
that these initialization steps are quite time consuming and it would not be wise
performing them for every JMS message. In fact the connection can be kept
open for a longer period of time.

ConnectionFactory connectionFactory = (ConnectionFactory)
 localContext.lookup("java:comp/env/jms/ConnectionFactory");
Connection connection = connectionFactory.createConnection();
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
producer = session.createProducer(dest);

• Once this initial setup is done, messages can be created and sent to the
destination.

String string = codec.encode(aclMessage);
Message message = runnerSession.createStringMessage(string);
message.setStringProperty("ContentType", codec.getMimeType());
producer.send(msg);

The JmsReceiverBean is used for receiving JMS messages asynchronously from the
"queue/ADFQueue" destination. Message-driven beans only have to override the
onMessage method in order to process the received messages:

public void onMessage(Message message) {
 /* ... */
 if (message instanceof TextMessage) {
 TextMessage textMessage = (TextMessage) message;
 String ContentType =
 textMessage.getStringProperty("ContentType");
 ACLCodec codec = ACLCodecFactory.getCodec(contentType);
 ACLMessage message = codec.decode(textMessage .getText());
 } else {
 logger.error("Unsuported message type"+message.getJMSType());
 }
 /* ... */
}

Some JMS providers can send also messages over HTTP, so using JMS does not
necessarily mean giving up all the advantages of HTTP. In case the performance
overhead introduced by a message queuing system is less important then reliability, the
protocol stack from Illustration 19 could be meaningful.

47

5.2 ACL Encodings
The agent communication language used by ADF agents is FIPA ACL (consult Section
3.4 for details). Fixing the message structure is very important in order to achieve
interoperability. The structure of a FIPA ACL message is however extensible, and it
allows custom properties to be added.

Inside agent platforms, the ACL messages are represented as instances of the
ACLMessage class. This class provides access to all the properties described in
Appendix 7.1, and also to any custom one. However, when ACLMessages need to be
exchanged between different agent platforms, they have to be encoded before they are
actually send to the destination and then decoded when they are received. FIPA has
defined three standard encodings for ACL messages: String [FIPA00070], XML
[FIPA00071] and bit efficient. ADF already fully supports the first two, and
additionally provides a SOAP encoding. Finally, the ACLMessageFactory can be used
to instantiate the appropriate codec for a given MIME Type [MIME Types].

String Codec
The StringCodec class provides support for encoding ACL messages to string and
decoding them from strings. Encoding a message to a string simply implies appending
them one at a time to a StringBuffer. Decoding them, however is more complex and a
parser was generated with javacc according to the standard grammar given by
[FIPA00070]. Here is an example ACL message encoded as a string:

(propose
:sender (agent-identifier :name agent1@example.com)
:receiver (set
 (agent-identifier :name agent2@example.com)
 (agent-identifier :name agent3@mycompany.com
 :resolvers (sequence (
 agent-identifier :name ams@mycompany.com
 :addresses (sequence http://gabriela.com/adf/a2)))
 :X-custom value))
:reply-to (set
 (agent-identifier :name agent1@example.com)
 (agent-identifier :name agent4@example.com))
:content "((action j (sell plum 50))(= (any ?x (and (= (price plum) ?
x) (< ?x 10))) 5)"
:language fipa-sl
:ontology fruit-market

48

Illustration 19: JMS over HTTP

HTTP(S)

JMS

TCP/IP

:protocol fipa-contract-net
:conversation-id 31465210548055
:reply-with 42652015871989
:in-reply-to cfr46520548055
:reply-by 20050518T042600765Z
:X-custom stuff)

XML Codec
The XMLCodec uses standard DOM operations in order to encode and decode ACL
Messages as XML.

• First, we have to obtain a DOMImplementation, in a parser dependent way. For
the Xerces implementation that is part of JDK1.5 we use the following code:

DOMImplementation domImpl=(DOMImplementation)com.sun.org.apache
.xerces.internal.dom.DOMImplementationImpl.getDOMImplementation();

• Then we have to make sure that the DOMImplementation supports Loas/Save
3.0, because those features will be used for serializing/deserializing DOM trees.

if (!domImpl.hasFeature("LS", "3.0")) {
 throw new ParserConfigurationException(
 "Load/Save 3.0 not supported");
}

• We use the DOMImplementation to create new documents:

Document doc = domImpl.createDocument(namespaceURI,
 rootElementQualifiedName, docType);

• We cast the DOMImplementation to a DOMImplementationLS:

DOMImplementationLS domImplLS = (DOMImplementationLS)domImpl;

• Using the DOMImplementationLS we parse and validate existing documents
using DTDs:

LSInput input = domImplLS.createLSInput();
input.setCharacterStream(reader);
LSParser parser = domImplLS.createLSParser(
 DOMImplementationLS.MODE_SYNCHRONOUS,
 validating ? "http://www.w3.org/TR/REC-xml" : null);
parser.getDomConfig().setParameter("validate", validating);
Document doc = parser.parse(input);

• Finally, we also serialize DOM trees with the DOMImplementationLS:

LSOutput output = domImplLS.createLSOutput();
output.setCharacterStream(writer);
LSSerializer serializer = domImplLS.createLSSerializer();
serializer.write(doc, output);

49

SOAP Codec
The SOAPCodec is actually not a standalone class, but a decorator to be used on an
XMLCodec. The SOAP codec uses the SOAP with Attachments API for Java (SAAJ)
in order to add a SOAP envelope and relevant SOAP headers, to a standard XML-
encoded message.

Using the SOAP encoding over the HTTP transport is a very natural choice. However,
SOAP can be used on any other transport, including JMS. This choice is described in
several articles including [Du and Liu, 2004] and [Carbone, 2002], and is also made
available in ADF (Illustration 20).

50

Illustration 20: SOAP over JMS

JMS

SOAP

FIPA ACL (XML)

6. Conclusion and Future Work

The results we achieved so far are encouraging. However, there are still some missing
pieces needed in order for agent communication to be a solved problem, not only for
ADF but for any agent platform:

• A standard reliable asynchronous transport protocol such as [WS-Reliability] or
[WS-ReliableMessaging], but with the support of the whole community. Having
only one, widely accepted standard is the only way to achieve interoperability.

• A better XML encoding for FIPA ACL messages. The DTD presented in
Appendix 7.4 fixes some of the more obvious flaws. However, in order to ensure
interoperability FIPA itself should fix this encoding and make update the
standard accordingly.

• The ontology problem. Although RDF and OWL are a big step forward, and
some task-oriented ontologies are already de-facto standards, more works needs
to be put into this.

Future Work
While agent communication can be regarded as a completed task for ADF, there are still
some things that can further be improved in order to make the framework viable, such
as better developing and administration tools. Two other important issues not addressed
to date by ADF are agent mobility and security.

Final quote
"We will always be stuck in the middle of an endless journey, not knowing whether the
final answer is just around the corner or a million miles away" - Dennis Overbye

51

7. Appendices

7.1 The FIPA ACL Message Structure

Parameter Description
performative The communicative act of the ACL message (see)
sender The agent performing the communicative act
receiver The intended recipient agent(s)
reply-to The agent to receive subsequent messages in this conversation
content The object of the action implied by the communicative act
language The language in which the content parameter is expressed
encoding The specific encoding of the content language expression
ontology The ontology(s) used to give a meaning to the symbols in the content
protocol The interaction protocol that the sending agent is employing with this

ACL message. (see Table)
conversation-id Introduces an expression which is used to identify the ongoing

sequence of communicative acts that together form a conversation.
reply-with Introduces an expression that will be used by the responding agent to

identify this message.
in-reply-to Denotes an expression that references an earlier action to which this

message is a reply.
reply-by Denotes a time and/or date expression which indicates the latest time

by which the sending agent would like to receive a reply.

7.2 The FIPA ACL Communicative Acts

Performative Description
accept-proposal The sender accepts a previously submitted proposal to perform an

action.
agree The sender agrees to perform some action, possibly in the future.
cancel Inform the receiver that the sender no longer has the intention that

the receiver performs a previously requested action.

52

Performative Description
cfp The action of calling for proposals to perform a given action.
confirm The sender informs the receiver that a given proposition is true,

where the receiver is known to be uncertain about the proposition.
disconfirm The sender informs the receiver that a given proposition is false,

where the receiver is known to believe, or believe it likely that, the
proposition is true.

failure The action of telling another agent that an action was attempted but
the attempt failed.

inform The sender informs the receiver that a given proposition is true.
inform-if A macro action for the agent of the action to inform the recipient

whether or not a proposition is true.
inform-ref A macro action for the sender to inform the receiver the object

which corresponds to a descriptor, for example, a name.
not-understood The sender of the act informs the receiver that it perceived that the

receiver performed some action, but that i did not understand what
the receiver just did. A particular common case is that the sender
did not understand a message previously received from the
receiver.

propagate The sender intends that the receiver treat the embedded message as
sent directly to the receiver, and wants the receiver to identify the
agents denoted by the given descriptor and send the received
propagate message to them.

propose Submit a proposal to perform a certain action, given certain
preconditions.

proxy The sender wants the receiver to select target agents denoted by a
given description and to send an embedded message to them.

query-if The sender asks the receiver whether a given proposition is true.
query-ref The sender asks the receiver for the object referred to by a

referential expression.
refuse The sender refuses to perform a given action, and explains the

reason for the refusal.
reject-proposal The sender informs the receiver that it has no intention that the

recipient performs the given action under the given preconditions.
request The sender requests the receiver to perform some action. One

important class of uses of the request act is to request the receiver
to perform another communicative act.

request-when The sender wants the receiver to perform some action when some
given proposition becomes true.

53

Performative Description
request-whenever The sender wants the receiver to perform some action as soon as

some proposition becomes true and thereafter each time the
proposition becomes true again.

subscribe The act of requesting a persistent intention to notify the sender of
the value of a reference, and to notify again whenever the object
identified by the reference changes.

7.3 FIPA Interaction protocols
• FIPA Request Interaction Protocol Specification [FIPA00026]

• FIPA Query Interaction Protocol Specification [FIPA00027]

• FIPA Request When Interaction Protocol Specification [FIPA00028]

• FIPA Contract Net Interaction Protocol Specification [FIPA00029]

• FIPA Iterated Contract Net Interaction Protocol Specification [FIPA00030]

• FIPA English Auction Interaction Protocol Specification [FIPA00031]

• FIPA Dutch Auction Interaction Protocol Specification [FIPA00032]

• FIPA Brokering Interaction Protocol Specification [FIPA00033]

• FIPA Recruiting Interaction Protocol Specification [FIPA00034]

• FIPA Subscribe Interaction Protocol Specification [FIPA00035]

• FIPA Propose Interaction Protocol Specification [FIPA00036]

7.4 The ADF Message DTD
<!ENTITY % communicative-acts "accept-proposal | agree | cancel | cfp
| confirm | disconfirm | failure | inform | not-understood | propose |
query-if | query-ref | refuse | reject-proposal | request | request-
when | request-whenever | subscribe | inform-if | inform-ref | proxy |
propagate">

<!ENTITY % msg-param "receiver | sender | content | language |
encoding | ontology | protocol | reply-with | in-reply-to | reply-by |
reply-to | conversation-id | user-defined">

<!ELEMENT fipa-message (%msg-param;)*>
<!ATTLIST fipa-message

act (%communicative-acts;) #REQUIRED
>

<!ELEMENT sender (agent-identifier)>

<!ELEMENT receiver (agent-identifier+)>

54

<!ELEMENT content (#PCDATA)>

<!ELEMENT language (#PCDATA)>

<!ELEMENT encoding (#PCDATA)>

<!ELEMENT ontology (#PCDATA)>

<!ELEMENT protocol (#PCDATA)>

<!ELEMENT reply-with (#PCDATA)>

<!ELEMENT in-reply-to (#PCDATA)>

<!ELEMENT reply-by EMPTY>
<!ATTLIST reply-by

time CDATA #REQUIRED
>

<!ELEMENT reply-to (agent-identifier+)>

<!ELEMENT conversation-id (#PCDATA)>

<!ELEMENT agent-identifier (name, addresses?, resolvers?, user-
defined*)>
<!ELEMENT name EMPTY>
<!ATTLIST name

id CDATA #IMPLIED
>

<!ELEMENT addresses (url+)>
<!ELEMENT url EMPTY>
<!ATTLIST url

href CDATA #IMPLIED
>
<!ELEMENT resolvers (agent-identifier+)>

<!ELEMENT user-defined ANY>

<!-- Proprietary extension (fixing completeness problem)
http://java.sun.com/dtd/properties.dtd -->
<!ELEMENT properties (comment?, entry*)>
<!ATTLIST properties version CDATA #FIXED "1.0">
<!ELEMENT comment (#PCDATA)>
<!ELEMENT entry (#PCDATA)>
<!ATTLIST entry key CDATA #REQUIRED>

55

8. Bibliography

[Aglets] Aglets. http://aglets.sourceforge.net.
[Ajanta] Ajanta: Mobile Agents Research Project. http://www.cs.umn.edu/Ajanta.
[Alur et al., 2003] Deepak Alur, John Crupi, Dan Malks - Core J2EE Patterns: Best
Practices and Design Strategies, Second Edition. Prentice Hall PTR, 2003.
[Blair and Stefani, 1998] Gordon Blair, Jean-Bernard Stefani - Open Distributed
Processing and Multimedia. Addison-Wesley, 1998.
[Burke et al., 2004] Bill Burke, Sacha Labourey, Richard Monson-Haefel - Enterprise
JavaBeans, Fourth Edition. O'Reilly, 2004.
[Carbone, 2002] Gunnison Carbone - Enhancing Web Services Infrastructures with
JMS. 2002. http://www.onjava.com/pub/a/onjava/2002/06/19/jms.html
[CCL] Constraint Choice Language.
http://www.lsi.upc.es/~steve/Publications/ccl_specification_v0201.pdf.
[Chappell, 2004] Dave Chappell - Enterprise Service Bus. O'Reilly, 2004.
[Chavez and Maes, 1996] Anthony Chavez, Pattie Maes - Kasbah: An Agent
Marketplace for Buying and Selling Goods. 1996. http://www-
ec.njit.edu/~bartel/NegoPap/KasbahMIT.pdf
[Cougaar] Cognitive Agent Architecture. http://cougaar.org/.
[D'Agents] D'Agents: Mobile Agents at Dartmouth College.
http://agent.cs.dartmouth.edu.
[DIET Agents] DIET Agents. http://diet-agents.sourceforge.net/.
[Du and Liu, 2004] Helen Du, Jeffrey Liu - Building a JMS Web service using SOAP
over JMS and WebSphere Studio. 2004. http://www-
128.ibm.com/developerworks/websphere/library/techarticles/0402_du/0402_du.html
[EJB3] JSR 220: Enterprise JavaBeans 3.0. http://www.jcp.org/en/jsr/detail?id=220.
[Erl, 2004] Thomas Erl - Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall PTR, 2004.
[Fielding, 2000] Roy Fielding - Architectural Styles and the Design of Network-based
Software Architectures, Chapter 5: Representational State Transfer (REST). 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
[FIPA] The Foundation for Intelligent Physical Agents. http://www.fipa.org/.
[FIPA-OS] FIPA-OS Agent Toolkit. http://fipa-os.sourceforge.net.
[FIPA00001] FIPA Abstract Architecture Specification.

56

http://www.fipa.org/specs/fipa00001/SC00001L.html.
[FIPA00008] FIPA SL Content Language Specification.
http://fipa.org/specs/fipa00008/SC00008I.html.
[FIPA00011] FIPA RDF Content Language Specification.
http://www.fipa.org/specs/fipa00011/XC00011B.html.
[FIPA00023] FIPA Agent Management Specification.
http://www.fipa.org/specs/fipa00023/SC00023K.html.
[FIPA00026] FIPA Request Interaction Protocol Specification.
http://fipa.org/specs/fipa00026/SC00026H.html.
[FIPA00027] FIPA Query Interaction Protocol Specification.
http://fipa.org/specs/fipa00027/SC00027H.html.
[FIPA00028] FIPA Request When Interaction Protocol Specification.
http://fipa.org/specs/fipa00028/SC00028H.html.
[FIPA00029] FIPA Contract Net Interaction Protocol Specification.
http://fipa.org/specs/fipa00029/SC00029H.html.
[FIPA00030] FIPA Iterated Contract Net Interaction Protocol Specification.
http://fipa.org/specs/fipa00030/SC00030H.html.
[FIPA00031] FIPA English Auction Interaction Protocol Specification.
http://fipa.org/specs/fipa00031/XC00031F.html.
[FIPA00032] FIPA Dutch Auction Interaction Protocol Specification.
http://fipa.org/specs/fipa00032/XC00032F.html.
[FIPA00033] FIPA Brokering Interaction Protocol Specification.
http://fipa.org/specs/fipa00033/SC00033H.html.
[FIPA00034] FIPA Recruiting Interaction Protocol Specification.
http://fipa.org/specs/fipa00034/SC00034H.html.
[FIPA00035] FIPA Subscribe Interaction Protocol Specification.
http://fipa.org/specs/fipa00035/SC00035H.html.
[FIPA00036] FIPA Propose Interaction Protocol Specification.
http://fipa.org/specs/fipa00036/SC00036H.html.
[FIPA00061] FIPA ACL Message Structure Specification.
http://www.fipa.org/specs/fipa00061/SC00061G.html.
[FIPA00067] FIPA Agent Message Transport Service Specification.
http://www.fipa.org/specs/fipa00067/SC00067F.html.
[FIPA00070] FIPA ACL Message Representation in String Specification.
http://fipa.org/specs/fipa00070/SC00070I.html.
[FIPA00071] FIPA ACL Message Representation in XML Specification.
http://fipa.org/specs/fipa00071/SC00071E.html.
[Franklin and Graesser, 1996] Stan Franklin, Art Graesser - Is it an Agent, or just a

57

Program?: A Taxonomy for Autonomous Agents. 1996.
http://www.msci.memphis.edu/~franklin/AgentProg.html
[Gehtland and Tate, 2004] Justin Gehtland, Bruce A. Tate - Better, Faster, Lighter
Java. O'Reilly, 2004.
[Haase 2002] Kim Haase - Java Message Service API Tutorial. Sun Microsystems,
2002.
[Hamill, 2004] Paul Hamill - Unit Test Frameworks. O'Reilly, 2004.
[He, 2003] Hao He - What is Service-Oriented Architecture?. 2003.
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
[HTTPR] HTTPR Specification. http://www.ibm.com/developerworks/library/ws-
httprspec.
[Jade] Java Agent DEvelopment Framework. http://jade.tilab.com.
[JBoss] JBoss Application Server. http://www.jboss.org.
[JBoss Application Server Guide, 2005] JBoss - The JBoss 4 Application Server Guide,
Release 3. JBoss, 2005. http://docs.jboss.org/jbossas/jboss4guide/r3/html/
[JBoss Getting Started, 2005] JBoss - Getting Started with JBoss 4.0, Release 4. JBoss,
2005. http://docs.jboss.org/jbossas/getting_started/v4/html/
[Jennings and Wooldridge, 1998] N. R. Jennings and M. Wooldridge - Applications of
Intelligent Agents. 1988. http://www.cs.umbc.edu/agents/introduction/jennings98.pdf
[JNDI Tutorial] The JNDI Tutorial.
http://java.sun.com/products/jndi/tutorial/index.html.
[Johnson and Foote, 1988] R. E. Johnson and B. Foote - Designing reusable classes.
1988.
[Johnson and Hoeller, 2004] Rod Johnson, Juergen Hoeller - Expert One-on-One:
J2EE Development without EJB. Wiley, .
[Karnik and Tripathi, 1999] Neeran M. Karnik, Anand R. Tripathi - Security in the
Ajanta Mobile Agent System. 1999. http://www.cs.umn.edu/Ajanta/papers/security-
ajanta.ps
[Kaye, 2003] Doug Kaye - Loosely Coupled: The Missing Pieces of Web Services. RDS
Press, 2003.
[KIF] Knowledge Interchange Format. http://logic.stanford.edu/kif/kif.html.
[Kozierok and Maes, 1993] Robyn Kozierok and Pattie Maes - A Learning Interface
Agent for Scheduling Meetings. 1993.
[KQML] Knowledge Query and Manipulation Language.
http://www.cs.umbc.edu/kqml/.
[Krafzig et al., 2004] Dirk Krafzig, Karl Banke, Dirk Slama - Enterprise SOA: Service-
Oriented Architecture Best Practices. Prentice Hall PTR, 2004.
[Lange and Oshima, 1999] D. Lange and M. Oshima - Seven good reasons for mobile

58

agents. 1999.
http://portal.acm.org/citation.cfm?id=298136&coll=portal&dl=ACM&CFID=47928167
&CFTOKEN=2067051
[LGPL] GNU Lesser General Public License. http://www.gnu.org/copyleft/lesser.html.
[Marinescu, 2002] Floyd Marinescu - EJB Design Patterns. Wiley, 2002.
[Matena et al., 2003] Vlada Matena, Sanjeev Krishnan, Linda DeMichiel, Beth Stearns
- Applying Enterprise JavaBeans, Second Edition. Addison Wesley, 2003.
[Menezes et al., 2001] Alfred J. Menezes, Paul C. van Oorschot and Scott A.
Vanstone - Handbook of Applied Cryptography. CRC Press, 2001.
http://www.cacr.math.uwaterloo.ca/hac/
[MIME Types] Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.
http://www.ietf.org/rfc/rfc2046.txt.
[Monson-Haefel and Chappell, 2001] Richard Monson-Haefel, David A. Chappell -
Java Message Service, First Edition. O'Reilly, 2001.
[Neuman, 1994] B. Clifford Neuman - Scale in Distributed Systems. 1994.
http://www.isi.edu/people/bcn/papers/pdf/94--_scale-dist-sys-neuman-readings-dcs.pdf
[Nichifor and Buraga, 2004] Ovidiu Nichifor, Sabin-Corneliu Buraga - ADF - Abstract
Framework forDeveloping Mobile Agents. 2004.
http://thor.info.uaic.ro/~busaco/publications/tr/adf.pdf
[Nichifor, 2004] Age of Agents - Software Agent Framework. .
[Nwana and Ndumu, 1999] Hyacinth S. Nwana, Divine T. Ndumu - A Perspective on
Software Agents Research. 1999. http://agents.umbc.edu/introduction/hn-dn-ker99.pdf
[OASIS] Organization for the Advancement of Structured Information Standards.
http://www.oasis-open.org.
[Omega] Omega. http://thor.info.uaic.ro/~busaco/projects/#omega.
[Pfleeger and Pfleeger, 2002] Charles Pfleeger, Shari Lawrence Pfleeger - Security in
Computing, 3rd Edition. Prentice Hall PTR, 2002.
[RDF] Resource Description Framework. http://www.w3.org/RDF/.
[RestWiki] RestWiki. http://rest.blueoxen.net/cgi-bin/wiki.pl.
[RFC2396] Uniform Resource Identifiers: Generic Syntax. Request for Comments.
http://www.ietf.org/rfc/rfc2396.txt.
[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt.
[RFC2821] Simple Mail Transfer Protocol. http://www.ietf.org/rfc/rfc2821.txt.
[Searle, 1969] John Searle - Speech Acts: An Essay in the Philosophy of Language.
1969.
[SOAP] SOAP Version 1.2. http://www.w3.org/TR/soap.

59

[SOAP Primer, 2003] SOAP Version 1.2 Part0: Primer.
http://www.w3.org/TR/2003/REC-soap12-part0-20030624.
[Sullins and Whipple, 2003] Benjamin G. Sullins, Mark B. Whipple - EJB CookBook.
Manning, 2003.
[Tanenbaum and van Steen, 2002] Andrew S. Tanenbaum, Maarten van Steen -
Distributed Systems: Principles and Paradigms. Prentice Hall, 2002.
[Tomcat] Apache Tomcat. http://jakarta.apache.org/tomcat/.
[Voyager] Voyager Java Development Platform.
http://www.recursionsw.com/voyager.htm.
[W3C] World Wide Web Consortium. http://www.w3.org/.
[Walls and Breidenbach, 2005] Craig Walls, Ryan Breidenbach - Spring in Action.
Manning, 2005.
[WebsphereMQ] WebSphere MQ. http://www-306.ibm.com/software/integration/wmq/.
[Winograd and Flores, 1987] Terry Winograd and Fernando Flores - Understanding
Computers and Cognition - A New Foundation for Design. Addison Wesley, 1987.
[WS-Coordination] Web Services Coordination.
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf.
[WS-I] Web Services Interoperability Organization. http://www.ws-i.org.
[WS-Reliability] OASIS Web Services Reliable Messaging TC. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrm.
[WS-ReliableMessaging] Web Services Reliable Messaging. http://www-
128.ibm.com/developerworks/library/specification/ws-rm/.
[WS-Security] OASIS Web Services Security TC. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss.
[WS-Transaction] Web Services Atomic Transaction.
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf.
[WSA] Web Services Architecture. http://www.w3.org/TR/ws-arch/.
[WSBPEL] OASIS Web Services Business Process Execution Language TC.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
[ZEUS] Zeus Agent Toolkit. http://sourceforge.net/projects/zeusagent/.

60

	1.Preface
	2.Introduction
	2.1Goal
	2.2Structure
	2.3Source Code
	2.4Acknowledgments

	3.The Basics
	3.1What Is a Software Agent?
	3.2Agent Frameworks
	3.3The FIPA Abstract Agent Architecture
	3.4The FIPA Agent Communication Language
	3.5Message-Oriented Communication
	Synchronous vs. Asynchronous
	Persistent vs. Transient
	Reliable vs. Unreliable

	3.6Service-Oriented Architectures
	3.7Web Services and SOAP
	3.8Java 2 Platform, Enterprise Edition
	Servlets
	Enterprise JavaBeans
	Session Beans
	Java Message Service
	Message-Driven Beans
	Java Naming and Directory Interface

	4.The ADF Architecture
	4.1Goals
	Interoperability
	Extensibility
	Platform Independence
	Scalability
	Transparency
	Easy to use
	Security
	Pragmatism

	4.2Design Overview
	4.3The Agent Management System
	4.4The Agent Container
	4.5Agent Runner

	5.Agent Communication in ADF
	5.1Transport Protocols
	Local Transport
	HTTP Transport
	JMS Transport

	5.2ACL Encodings
	String Codec
	XML Codec
	SOAP Codec

	6.Conclusion and Future Work
	Future Work
	Final quote

	7.Appendices
	7.1The FIPA ACL Message Structure
	7.2The FIPA ACL Communicative Acts
	7.3FIPA Interaction protocols
	7.4The ADF Message DTD

	8.Bibliography

